https://github.com/z88dk/z88dk/wiki/#header_listing

Home

An Introduction to Z88DK

Z88DK is a complete development toolkit for the 8080, 8085, ghz80, z80, z180, z80n and Rabbit
processors.

It contains two C compilers, an assembler / linker / librarian, data compression tools and a utility for
processing the raw binaries into forms needed by specific targets.

It comes with an extensive library of functions written in assembly language that implements the C
standard and many extensions. It holds the largest repository of z80 code on the internet.

Development in assembly language or C is completely integrated; projects can be 100% assembler,
100% C or any mixture of the two. The toolset treats both as first-class languages and is designed to
make it very easy to mix them at will with C and asm functions being able to call each other or
make use of the hand-optimized library functions.

The toolset is modern and has modern features. Most z80 assembly tools are simple in that they
assume a small memory space (confined to 64k) or lack linking capability. Z88DK is able to
generate ROMable code and code for multiple memory banks (bank assignment still requires
human direction) and the linking capability means large bodies of code or data can be shared in
libraries between projects with the linker only drawing out code and data that is actually used by a
linking program.

We compare Z88DK with other commercial and non-commercial offerings using benchmarks to
identify where Z88DK can be improved. Z88DK compares favourably and you can see that for
yourself by investigating the benchmarks if you are interested.

Libraries

z88dk supports two different library implementations, they are being slowly merged and much of
the standard C library is now shared between the implementations.

https://github.com/z88dk/z88dk/tree/master/libsrc/_DEVELOPMENT/EXAMPLES/benchmarks

https://github.com/z88dk/z88dk/wiki/#header_listing

Classic library
The classic library is z88dk's traditional library and is written with in a mix of assembler and C.

Supported Platforms

The classic library supports over 100 platforms and provides many extensions (graphics, sound etc)
as well as broadly supporting the C library standard.

Newlib

The new C library aims to implement as large a subset of C11 as is reasonable on an 8-bit target.
The library does not confine itself to the standard and adds many non-standard functions drawn
from BSD and GNU, as well as libraries aiming to support text, graphics and sound among other
things. The library is slowly being merged into the classic library.

Supported Platforms

The new library supports a restricted number of targets, and notably doesn't (yet) support file I/O.
The supported targets are: +cpm, +hbios, +rc2014, +scz180, +sms, +yaz180, +z80, +z180, +zx,
+zxn

Tools

This is a quick overview of the tools included in Z88DK. Names without underlining do not have a
Help-Text (as of 2023-02-16)

* ZCC is the toolchain's front end. zcc can generate an output binary out of any set of input
source files.

* SCCZ80 is z88dk's native c compiler. sccz80 is derived from small c but has seen much
development to the point that it is nearly 89 compliant as well features from later standards.

* ZSDCC is z88dk's customization of the sdcc optimizing ¢ compiler. Our patch makes sdcc
compatible with the z88dk toolchain, gives it access to z88dk's extensive assembly language
libraries and ready-made crts, addresses some of sdcc's code generation bugs and improves

on sdcc's generated code. It has very good standards compliance with c¢89, some c99 and a
little c11.

* Z88DK-Z80ASM (not to be confused with several external projects called z80asm) is a
fully featured assembler / linker / librarian implementing sections.

* Z88DK-Z80NM is z80asm's companion library dumper. It can provide a listing of functions

or data encoded in an object or library file.

» Z88DK-ZOBJCOPY allows object and library files built by Z80ASM to be manipulated.

» Z88DK-APPMAKE processes the raw binaries generated by the toolkit into a form suitable
for specific target machines. For example, it can generate intel hex files, tapes, ROMs, etc.

2-11

https://github.com/z88dk/z88dk/wiki/Tool---z80asm
https://github.com/z88dk/z88dk/wiki/Tool---zobjcopy
https://github.com/z88dk/z88dk/wiki/Tool---z80nm
https://github.com/z88dk/z88dk/wiki/Tool---z80asm
https://github.com/z88dk/z88dk/wiki/Tool---zcc
https://github.com/z88dk/z88dk/wiki/Introduction
https://github.com/z88dk/z88dk/wiki/Platform
https://github.com/z88dk/z88dk/wiki/Classic-Overview

https://github.com/z88dk/z88dk/wiki/#header_listing

» Z88DK-TICKS is a command line z80 emulator that can be used to time execution speed of

code fragments.

» Z88DK-GDB provides the debugger interface from ticks and connects to a gdbserver to
permit line-by-line debugging of software in emulators or on real hardware.

e Z88DK-DIS is a command line disassembler for Z80, Z180, Z80N and Rabbit 2000/3000. It
can additionally read map files generated by z80asm to provide a more symbolic output.

» Z88DK-LIB is an installer for third party libraries. It manages installation, removal and
listing of available libraries.

* Z88DK-ZX0 and Z88DK-ZX7 are PC side data compression tools with companion
decompression functions in the z80 library.

» Z88DK-DZXO0 and Z83DK-DZX7 are PC-side decompressor counterparts to the z88dk-zx0
and z88dk-zx7.

These tools are not normally directly invoked by the user:

* M4 acts as z88dk's macro preprocessor and can optionally process files ahead of the ¢
preprocessor or assembler.

* UCPP is the c preprocessor invoked for sccz80.
* ZSDCPP is the c preprocessor invoked for zsdcc.
* Z88DK-ZPRAGMA is used by the toolchain to process pragmas embedded in c source.

» Z88DK-COPT is a regular expression engine that is used as peephole optimizer for sccz80
and as a post-processing tool for both sccz80 and zsdcc.

Tool zcc

The compiler frontend: ZCC

The frontend of z88dk is called zcc, it is this that you should call if you want to do any
compilations. To invoke the frontend use the command:

zcc [flags] [files to be compiled/linked]

The files can be either C files (.c) , preprocessed C files(.i), compiled C files (.asm), optimised
compiled file (.opt) or assembled files (.0), any combination of them can be mixed together and the
relevant processed done on them.

Processing of a file list is done on each file in turn (i.e. preprocess, compile, optimise, assemble) at
the end all files may be linked into a single executable if desired.

Options accepted by zcc can be reported using:

3-11

https://github.com/z88dk/z88dk/wiki/Tool-z88dk-dis
https://github.com/z88dk/z88dk/wiki/Tool---ticks

zcc -h

https://github.com/z88dk/z88dk/wiki/#header_listing

Details on the configuration of a port can be revealed with:

zcc +port -specs

Options to control the action of the frontend

stop

file.

+[file]

-a
-S
-C
-E
-0

-bn [file]

-0n

-v
-vn
-clib=[1ib]
-subtype=[x]
-compiler=X

Name of alternate config file

(must be the first argument)

Produce .asm (or .opt) file only

Produce .asm (or .opt) file only

Do not link object files

Preprocess files only, leave output in .i file

Specify the output name for the stage that compiling will

at. For example "-a -o file.asm" will output an assembly

Specify output file for binary (default is a.bas for BASIC
programs and a.bin for application binaries)

Optimize compiler output (to .opt file)

n can be either 0 (none) 1,2,3, level 2 is recommended.
Level 3 is suitable for large programs (includes certain
1lib functions to reduce size of code(!))

Verbose - echo commands as they are executed

Don't be verbose

Switch to the specified standard library

Generate output for the platform subtype x

X=sdcc or X=sccz80

Options to control library usage

Parameters val

-Lpath
-1[name]

-1Im
-m

-s
--list

id for the z88 (see the platform sections for more options)

Add to the library search path

Link in a library - supply just the name (after placing them
in the correct directory)

Link in the generic Z80 maths library

Generate .map files when assembling/linking
Generate .sym files when assembling/linking
Generate list files

Other libraries are available

Options to control the type code produced

788

-unsigned

-create-app
-startup=

-pragma-define
-pragma-bytes
-pragma-redire

Implicitly define everything as unsigned unless explicitly
told otherwise (sccz80)

Create a file suitable for running on an emulator/machine
This parameter affects the resulting code in a target
dependent way: in example, when used with the Cambridge

the -startup=3 parameter instructs the compiler to produce
standalone code that can be run from a set
address from BASIC. (Use -zorg= to change the address)

Define an option, for example:

Dump a string of bytes zcc_opt.def
ct Redirect a function, for example:

-pragma-redirect:fputc_cons=xyz123

4-11

https://github.com/z88dk/z88dk/wiki/#header_listing

will make xyz123 the assembler label that is used for
console
output

Miscellaneous options

--c-code-in-asm Intersperse C code as comments in the assembler output,

warning:
this *will* clobber some optimisations for sccz80

-Cp[option] Pass an option through to the pre-processor

-Ca[option] Pass an option through to the assembler

-Cl[option] Pass an option through to the linker

-Cz[option] Pass an option through to appmake

-Cc[option] Pass an option through to sccz80

-Cs[option] Pass an option through to sdcc

In addition, the flags, -D, -1, -U are passed through to the preprocessor.

Any unrecognised options are passed through to the compiler (to allow for improvements in the
future.)

Configuration files

In order for z88dk to work on as many platforms as possible and so that it can be easily tweaked,
retargetted and generally mutilated, the frontend (zcc) consults a plain text configuration file which
is in the directory pointed to be the ZCCCFG variable.

The config file is indicated by the first option to zcc which is +[machine identifier]

If you wish to use a config file located in the current directory or anywhere else on the system then
specify the full path and filename - make sure the filename as the suffix .cfg.

The order of checking is as follows:

1. "Local" file (if exists) eg +temp.cfg
2. ZCCCFG/[name].cfg eg +z88

Tool z80asm

780 macro assembler / linker / librarian (z80asm)

z80asm is part of the z88dk project and is used as the back-end of the z88dk C compilers. It is not
to be confused with other non-z88dk related projects with the same name.

z80asm is a relocatable macro assembler, linker and librarian that can assemble Intel 8080/8085 and
2.80-family assembly files into a relocatable object format, can manage sets of object files in
libraries and can build binary images by linking these object files together. The binary images can
be defined in different sections, to match the target architecture.

http://www.z88dk.org/

https://github.com/z88dk/z88dk/wiki/#header_listing

Usage ...

... as assembler
z88dk-z80asm [options] file...

By default, i.e. without any options, z80asm assembles each of the listed files into relocatable
object files with a . 0 extension. It shows a summary of all the options when called with the -h
option.

... as linker
z88dk-z80asm -b [options] file...

When called with the -b option, z80asm links the object files together into a set of binary files.

... as librarian
z88dk-z80asm -xlibrary.lib [options] file...

When called with the - X option, zZ80asm builds a library containing all the object files passed as
argument. That library can then be used during linking by specifying it with the - 1 option.

Contents

e z80asm Environment

e z80asm Command Line

e z80asm Input Format

e z80asm Preprocessor

» z80asm Expressions
e z80asm Directives

e 7z80asm Object File Format
e z80asm Old Manual

» z80asm Recognized Opcodes

Copyright
The original z80asm module assembler was written by Gunther Strube. It was converted from QL
SuperBASIC version 0.956, initially ported to Lattice C, and then to C68 on QDOS.

It has been maintained since 2011 by Paulo Custodio.

Copyright (C) Gunther Strube, InterLogic 1993-1999
Copyright (C) Paulo Custodio, 2011-2021

License

Artistic License 2.0 http://www.perlfoundation.org/artisticlicense?2 0

http://www.perlfoundation.org/artisticlicense2_0
https://raw.githubusercontent.com/z88dk/z88dk/master/src/z80asm/dev/cpu/opcodes.txt
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---old-manual
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---object-file-format
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---directives
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---expressions
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---preprocessor
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---input-format
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---command-line
https://github.com/z88dk/z88dk/wiki/Tool---z80asm---environment

https://github.com/z88dk/z88dk/wiki/#header_listing

Tool z80nm

Object and Library File Dumper

Usage

z80nm [options] input

Description

z80nm reads the input library or object file generated by z80asm and produces a dump of its
contents. It can read all the current and past object and library file versions.

Options
° -a

Show all

e -
Show local symbols

. -e

Show expression patches

* -

Show code dump

* -h
Display this help

Tool zobjcopy

Object and Library File Manipulator

Usage
zobjopy input [options] [output]

Description

zobjcopy reads the input library or object file generated by z80asm and produces an equivalent
output file, where the input file can be in any of the current or older object file formats of z80asm
and the output file is updated to the current format.

Each option denotes one action to be done on the input file, and multiple options can be specified to
execute multiple actions in the sequence given in the command line.

https://github.com/z88dk/z88dk/wiki/#header_listing

Options

-1 | --list
Only reads an input file and displays the contents, does not write an output file.

--hide-local
In option --list, do not show local symbols.

--hide-expr
In option --list, do not show expressions.

--hide-code
In option --list, do not show code dump of sections.

-v | --verbose
Tells what is happening.

-s old-name-regex=new-name | --section old-name-regex=new-name

Renames all sections that match the old name regex (standard POSIX) to the new name.
Code sections are merged, if appropriate, fixing the patch addresses of expressions and label
values accordingly.

-p name-regex,prefix | --add-prefix name-regex,prefix
Renames all global symbols that match the given regex, adding the specified prefix. All
expressions where the renamed symbols are used are corrected accordingly.

-y old-name=new-name | --symbol old-name=new-name
Renames a global or external symbol. All expressions where the renamed symbols is used
are corrected accordingly.

-L regex | --local regex
Makes all global symbols that match the regex local.

-G regex | --global regex
Makes all local symbols that match the regex global.

-F nn|0Oxhh |--filler nn|Oxhh

Change the filler byte to be used when merging sections to respect the ALIGN requirement.
The default is OxFF.

The value can be supplied as decimal or hexadecimal with a '0x' prefix.

-O section,nn|0xhh |--org section,nn|0Oxhh
Change the ORG of the given section.

-A section,nn|0xhh |--align section,nn|0xhh
Change the ALIGN of the given section.

Examples

Dump the contents of a library file:

zobjcopy --list file.lib

https://github.com/z88dk/z88dk/wiki/#header_listing

Rename all sections starting with "text" to "rom" and all starting with "data" to "ram", writing the
output in file2.lib:

zobjcopy file.lib --section Atext=rom --section Adata=ram file2.lib --verbose

Add a "lib_" prefix to all global symbols that start with "ff":
zobjcopy file.lib --add-prefix Aff,1lib_ file2.lib --verbose

Rename the global symbol "main" to "_main"

zobjcopy file.lib --symbol main=_main --verbose

Make the "main" symbol local:

zobjcopy file.lib --local 'Amain$' --verbose

Make the "main" symbol global:

zobjcopy file.lib --global '~main$' --verbose

Merge all sections, use 0x00 as the alignment byte:

zobjcopy file.lib --filler Ox00 --section .=text --verbose

Change section "text" to ORG 0x8000 and ALIGN 16:

zobjcopy file.lib --org text,0x8000 --align text,16 --verbose

TO-DO
» factor code into z80asm

e disassemble code sections

Tool ticks

Ticks is a command line CPU emulator that can be used for testing and debugging algorithms and
code. The classic library can compile binaries that run on ticks using the +test target.

Usage
In it's simplest case, launch ticks with:

z88dk-ticks [binary file]

It will run for around 10,000,000 ticks which may not be sufficient, to increase the time it will run
use the -w option:

z88dk-ticks -w X [binary file]

Where X counts the number of 400,000,000 cycles to wait before exiting.

https://github.com/z88dk/z88dk/wiki/#header_listing

To specify command line options (which are picked up main in the argc and argv parameters
invoke ticks as follows:

z88dk-ticks [binary file] -- [argv@] [argvl]

CPU Features

Ticks supports emulating the z80 (default), 8080 (-m8080), 8085 (-m8085), ghz80 (-ghz80),
2180 (-mz180), ZX Next z80 extensions (-mz80 - zxn) and Rabbit processors (-mr 2k), reporting
accurate timing information for each target. Note: Not all Rabbit instructions are emulated.

When emulating the ZX Next cpu, ZX Next style MMU paging is available.

CP/M Emulation

Ticks supports a limit number of BDOS calls launching it to run a .COM file will enable this mode
and can allow some CP/M programs to run.

Debugging
Ticks provides a command line debugger, this can be launched as follows:

z88dk-ticks -d -x [map file] [binary file]

Specify -x [map file] is optional, however specifying it allows symbolic debugging. Ticks
will then sit at address 0 waiting for an input from you. Type help to view the available
commands.

Hotspot detection

Ticks can also report hotspots for code execution, launch the debugger, type hotspot on and
then cont, on exiting a file called hotspots will be written in the current directory. This file
reports the number of times an address has been executed along with a disassembly of that line. To
order this in terms of frequency you can use the standard sort tool. For example:

sort -nr hotspots

Will show the commonest hit addresses first of all.

sort -nr -k2 hotspots

Will show the number of clock cycles spent at each address.

Stdio and File I/O

Ticks provides a full stdio that will output to the console, alongside this, file I/O is supported as
well.

10-11

https://github.com/z88dk/z88dk/wiki/#header_listing

Hardware emulation

* Ticks provides an ACIA emulation that is accessed using ports 0x80 (Ctrl/status) and 0x81
(in/out) that can be used to simulate the serial port on an RC2014 board.
* An emulated AM9511 maths co-processor is available on ports 0x42 and 0x43

Tool z88dk dis

A full z80 disassembler is provided with z88dk. In addition to supporting the z80, it can also
disassemble code for the other supported CPUs (8080, ghz80, 2180, z80-z80n and Rabbit
processors) as well as other related (but unsupported by z88dk) processors: 8085, R800, ez80.

Usage
At its simplest:
z88dk-dis -0 [address] [binary file]

Will load binary file at the specified address and start disassembling from that point.

The diassembler understands the .map files generated by z80asm, and these will be read using the
- X option:

z88dk-dis -0 [address] -x [map file] [binary file]
Symbols that appear in more than one compiled source code file (module) will have the module

name appended to them. e.g. a symbol named 1oop in modules fopen_c and fclose_c will
become 1loop_fopen_c and 1loop_fclose_c.

Specifying the CPU

The following options control which CPU z88dk-dis will interpret the binary as.
Flag CPU Notes

-mz80 280

-mz180 7180

-mez80 ez80 Short mode only

-mz80-z80n ZX-Next Supports the extended opcodes in the ZX Next CPU
-mr2k Rabbit 2000

-mr3k Rabbit 3000

-mr800 Ascii R800 As used in the MSX Turbo

-mgbz80 Gameboy z80

-m8080 Intel 8080 Using Z80 Opcodes

11-11

	Home
	An Introduction to Z88DK
	Libraries
	Classic library
	Supported Platforms

	Newlib
	Supported Platforms

	Tools
	Tool zcc
	The compiler frontend: ZCC
	Options to control the action of the frontend
	Options to control library usage
	Options to control the type code produced
	Miscellaneous options
	Configuration files

	Tool z80asm
	Z80 macro assembler / linker / librarian (z80asm)
	Usage ...
	... as assembler
	... as linker
	... as librarian

	Contents
	Copyright
	License

	Tool z80nm
	Object and Library File Dumper
	Usage
	Description
	Options

	Tool zobjcopy
	Object and Library File Manipulator
	Usage
	Description
	Options
	Examples
	TO-DO

	Tool ticks
	Usage
	CPU Features
	CP/M Emulation
	Debugging
	Hotspot detection

	Stdio and File I/O
	Hardware emulation

	Tool z88dk dis
	Usage
	Specifying the CPU

